If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5+70t-16t^2=0
a = -16; b = 70; c = +2.5;
Δ = b2-4ac
Δ = 702-4·(-16)·2.5
Δ = 5060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5060}=\sqrt{4*1265}=\sqrt{4}*\sqrt{1265}=2\sqrt{1265}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-2\sqrt{1265}}{2*-16}=\frac{-70-2\sqrt{1265}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+2\sqrt{1265}}{2*-16}=\frac{-70+2\sqrt{1265}}{-32} $
| 13x-6=(2)(21x+8) | | 2(6x+4)-6+2x=3(4x=3)=1 | | -3(1+8n)-23=2n | | 16t^2+70t-16t^2=0 | | 7x+7=8+16 | | 27=2w+13 | | 3x+×÷2=200 | | 2x+290=360 | | 5z+6=10 | | -1,5x-2=1/3x-2 | | 7x9=68 | | 8s-3=-19 | | 4(7x=1)=-220 | | z9+2=7 | | 4(7x=1)+-220 | | 1xx1xx1xx1xx1x=32 | | xxxxxxxxx=32 | | 920=2d+250 | | 5h-2h+15+-5=3h+15 | | 7*x+67=43-x | | 3z/10-1=1 | | 1xx1x1x1x1x=32 | | X=215000/10000+10000/x | | 2y9-59=49 | | x•x•x•x•x=32 | | 8(n-2)=44+2n | | 8x2-7x=1 | | 5x-8+42=0 | | 50+10x=130 | | (-4.5,6y+1-3y=-17) | | 6r–1+6r=11 | | 3(10x-x)=60-x |